## Extra Space Traffic Impact Study

## 650 SE Oldham Parkway Lee's Summit, Missouri



Prepared for:
E \& A Consulting Group, Inc.

Prepared by TranSystems

March 2019

# TranSystems 

EXPERIENCE | Transportation

## TranSystems

2400 Pershing Road
Suite 400
Kansas City, MO 64I08
Tel 8163298600
Fax 816329 8601
www.transystems.com
March 4, 2019
Mr. David R. Harnisch, Jr, PE
E \& A Consulting Group, Inc.
10909 Mill Valley Road, Suite 100
Omaha, NE 68I54

## RE: Extra Space Traffic Impact Study

650 SE Oldham Parkway
Lee's Summit, Missouri
Dear Mr. Harnisch:
In response to your request and authorization, TranSystems has completed a traffic impact study for the proposed self-storage facility to be located at 850 SE Oldham Parkway in Lee's Summit, Missouri. The purpose of this study was to assess the impact of the proposed development on the surrounding transportation system.

Included in this study is a discussion of the anticipated impacts of the proposed development on the adjacent street network for the following analysis scenarios:

- Existing Conditions
- Existing plus Development Conditions

We trust that the enclosed information proves beneficial to you and the City of Lee's Summit in this phase of the development process. We appreciate the opportunity to be of service to you and will be available to review this study at your convenience.

Sincerely,
TRANSYSTEMS


Addison Miller, EIT


JJW/ARM:arm:PIOII90016

## Introduction

TranSystems has completed this traffic impact study for the proposed self-storage facility to be located at 650 SE Oldham Parkway in Lee's Summit, Missouri. The purpose of this study was to assess the impact of the proposed development on the surrounding transportation system. The location of the project relative to the major streets in the area is shown on Figure A-I in Appendix A.

In addition to a description of the proposed development and the surrounding transportation infrastructure, this study includes trip generation estimates, capacity analyses, and a summary of findings.

## Proposed Development Plan

The development site is currently vacant land surrounded by commercial land uses. The proposed development is a three-story self-storage mini-warehouse with a basement. This building will have 121,000 square feet of storage space with a 3,750 square foot of covered drive-thru for loading and unloading activities. As part of the development, there will also be a paved parking lot on the south side of the building.

The site will be accessed from a single driveway on the west side of the development, connecting to a private access road. The site driveway will be aligned with a parking aisle in the parking lot of the neighboring grocery store. A copy of the proposed site plan for the development is included on Figure A-2 for reference.

## Study Area

To assess the impacts of the proposed development, the intersections listed below were identified for study during the Saturday mid-day and P.M. peak hours of a typical weekday.

- SE Hamblen Road and Access Road
- SE Oldham Parkway and Access Road
- Site Driveway and Access Road


## Surrounding Street Network and Land Uses

The development site is bounded by Oldham Parkway on the south, a roller skating rink on the east, U.S. 50 Highway on the north and an access road on the west. To the south of the site, across Oldham Parkway there is a Home Depot store. An Aldi grocery store, Perkin's restaurant and Super 8 motel are three existing business located to the west of the site, which have parking lots accessible from the access road.

The access road is a two-lane private street that runs north/south along the west side of the development site, then curves toward the west. The access road is contained within an ingress-egress easement. The street has curbs and gutters along each side. At the southwest corner of the development site, the access road intersects Oldham Parkway, aligning with a driveway to Home Depot on the south side of the intersection. After curving to the west, the access road intersects with Hamblen Road. The intersection with Hamblen Road is slightly offset from an intersection with a different segment of Oldham Parkway.

Oldham Parkway is a four-lane street along the south edge of the development site. There are two lanes in the eastbound direction, a center left-turn lane and one lane in the westbound direction. Both sides of the street have curbs and gutters, and there is sidewalk along the north side of the street to the west of the access road. The posted speed limit on Oldham Parkway is 40 mph .

Hamblen Road is a four-lane roadway north of Oldham Parkway and a three-lane roadway to the south. There are curbs and gutters along both sides of the street, and there are no sidewalks. The posted speed limit is 35 mph . A raised median on Hamblen Road restricts southbound and westbound left-turns at the intersection with the access road. North of the development site on Hamblen Road, there is an interchange with U.S. Highway 50. North of the interchange Hamblen Road becomes Missouri 291 Highway.

## Traffic Counts

Turning-movement traffic volume counts were collected at the study intersections on Saturday, February 9, 2019, from II:00 A.M. to I:00 P.M. and on Tuesday February I2, 2019 from 4:00 to 6:00 P.M. Based on the data, the Saturday peak hour generally occurs between II:30 A.M. and I2:30 P.M., and the weekday P.M. peak hour occurs between 4:30 and 5:30 P.M. The existing lane configurations, traffic control devices, and peak hour traffic volumes have been illustrated on Figure A-3.

## Analysis

The scope of analysis for the assessment of the proposed development's impact on the surrounding transportation system is based in large part on the recommended practices of the Institute of Transportation Engineers (ITE), as outlined in their Traffic Engineering Handbook. ITE is a nationallyrecognized organization of transportation professionals with members from both private and public sectors. The analysis of the proposed development's impact included development of trip generation and trip distribution estimates as well as a traffic operations assessment for each study scenario. Each of the analysis methodologies and findings are described in the subsequent sections.

## Trip Generation

Trip generation estimates were prepared using the Institute of Transportation Engineer's Trip Generation, IOth Edition. Table I shows the expected trips to be generated by the proposed development. Additional information related to trip generation is included in Appendix B.

| Table I <br> Proposed Development Trip Generation |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Land Use | Intensity | ITE Code | Average Weekday | Saturday Peak Hour |  |  | P.M. Peak Hour |  |  |
|  |  |  |  | Total | In | Out | Total | In | Out |
| Mini-Warehouse | 121,000 sf | 151 | 183 | 38 | 22 | 16 | 21 | 10 | 11 |
| Total Development Trips |  |  | 183 | 38 | 22 | 16 | 21 | 10 | II |

## Trip Distribution

The estimated trips generated by the proposed development were distributed onto the street system based on the trip distributions summarized on the next page in Table 2. These distributions are based on existing travel patterns in the area and engineering judgment. The detailed distribution patterns through the study intersections are shown in Appendix B.

| Trip Distribution |  |
| :--- | :---: |
| Direction To/From | Percentage |
| North on Hamblen Road | $50 \%$ |
| South on Hamblen Road | $25 \%$ |
| East on Oldham Parkway | $25 \%$ |
| Total | $\mathbf{1 0 0 \%}$ |

## Traffic Operation Assessment

An assessment of traffic operations was made for the scenarios listed below.

- Existing Conditions
- Existing plus Development Conditions

The study intersections were evaluated using the Synchro traffic analysis software package. Calculations were performed based on the methodologies outlined in the Highway Capacity Manual (HCM), 6th Edition, which is published by the Transportation Research Board. The operating conditions at an intersection are graded by the "level of service" experienced by drivers. Level of service (LOS) describes the quality of traffic operating conditions and is rated from " A " to " F ". LOS A represents the least congested condition with free-flow movement of traffic and minimal delays. LOS F generally indicates severely congested conditions with excessive delays to motorists. Intermediate grades of B, C, D, and E reflect incremental increases in the average delay per stopped vehicle. Delay is measured in seconds per vehicle. Table 3 shows the upper limit of delay associated with each level of service for unsignalized intersections.

Table 3
Intersection Level of Service Delay Thresholds

| Level of Service (LOS) | Unsignalized |
| :---: | :---: |
| A | $\leq 10$ Seconds |
| B | $\leq 15$ Seconds |
| C | $\leq 25$ Seconds |
| D | $\leq 35$ Seconds |
| E | $\leq 50$ Seconds |
| F | $>50$ Seconds |

Unsignalized intersections are evaluated based on the movement groupings which are required to yield to other traffic. Typically, these are the left turns off of the major street and the side-street approaches for two-way stop-controlled intersections. At unsignalized intersections lower LOS ratings ( $\mathrm{D}, \mathrm{E}$ and F ) do not, in themselves, indicate the need for additional improvements. Many times there are convenient alternative routes to avoid the longer delays. Other times the volumes on the unsignalized approaches are relatively minor when compared to the major street traffic, and improvements such as traffic signal installation may increase the average delay to all users of the intersection.

The decision to install a traffic signal, which is often considered when lower LOS ratings are projected, should be based on engineering studies and the warrants for traffic signal installation as outlined in the Federal Highway Administration's Manual on Uniform Traffic Control Devices (MUTCD). Signals are typically not recommended in locations where there are convenient alternative paths, or if the installation of a traffic signal would have negative impacts on the surrounding transportation system.

The LOS rating deemed acceptable varies by community, facility type and traffic control device. The City of Lee's Summit has identified LOS C as the minimum desirable goal for unsignalized intersections. However, at unsignalized intersections LOS D or E are often considered acceptable for low to moderate traffic volumes where the installation of a traffic signal is not warranted by the conditions at the intersection, or the location has been deemed undesirable for signalization.

## Existing Conditions

The results of the Existing Conditions intersection analyses are summarized in Table 3. The study intersections were evaluated with the lane configurations, traffic volumes, and traffic control devices shown on Figure A-3. The Synchro output files are included in Appendix C.

| Table 4 <br> Intersection Operational <br> Existing |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Conditions |  |  |  |  | Analysis

The results in Table 4 indicate that all movements currently operate at acceptable levels of service during the peak hours, except for two movements. The eastbound left-turn movement at the Hamblen Road and access road intersection which operates at LOS E and LOS F during the Saturday Mid-day and P.M. peak hours, respectively. This lower level of service is at the eastbound Oldham Parkway approach. The volume of traffic for this movement is less than the minimum thresholds for traffic signal installation. Additionally, the intersection is only 200 feet south of the interchange, which is undesirable for signalization given the close proximity between intersections. Therefore, no improvements are identified to increase the level of service for this movement.

The northbound left turn movement exiting the Home Depot driveway at Oldham Parkway operates at a LOS D during both peak hours. The volume of traffic for this movement is less than the minimum thresholds for traffic signal installation. Alternate routes are available if delay are unacceptable to drivers. As such, no improvements are identified to increase the level of service for this movement.

## Existing plus Development Conditions

The results of the Existing plus Proposed Development Conditions intersection analyses are summarized in Table 5. This study scenario considered the addition of traffic from the proposed development. The study intersections were evaluated with the lane configurations, traffic volumes, and traffic control devices shown on Figures A-4 and A-5. The Synchro output files are included in Appendix C.

| Table 5 Intersection Operational Analysis Existing plus Development Conditions |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Intersection Movement | Saturday Peak Hour |  | P.M. Peak Hour |  |
|  | LOS ${ }^{1}$ | Delay ${ }^{2}$ | LOS ${ }^{1}$ | Delay ${ }^{2}$ |
| Hamblen Road and Access Road |  |  |  |  |
| Northbound Left-Turn | A | 9.5 | A | 10.0 |
| Eastbound Left-Turn | E | 43.3 | F | 88.8 |
| Eastbound Right-Turn | B | 11.4 | B | 13.0 |
| Westbound Right-Turn | B | 11.4 | B | 11.7 |
| Access Road and Parking Aisle/Site Driveway |  |  |  |  |
| Northbound Left-Turn | A | 7.5 | A | 7.5 |
| Southbound Left-Turn | A | 7.5 | A | 7.4 |
| Eastbound | A | 9.8 | A | 9.1 |
| Westbound | B | 11.0 | B | 10.2 |
| Oldham Parkway and Access Road |  |  |  |  |
| Northbound | D | 34.1 | D | 28.3 |
| Southbound | B | 14.3 | C | 15.7 |
| Eastbound Left-Turn | A | 8.3 | A | 8.4 |
| Westbound Left-Turn | A | 8.1 | A | 8.0 |

As shown in the table, all movement at the intersections are projected to operate at the same levels of service as in the Existing Conditions scenario. With the addition of development traffic, the increase in
intersection delay is projected to be negligible, generally less than a second. The site driveway is projected to operate at an acceptable level of service during both peak hours.

As in the Existing Conditions scenario, the eastbound left-turn movement at the Hamblen Road and access road intersection as well as the northbound movement at the Oldham Parkway and access road intersection both operate at lower levels of service. The addition of development traffic is not projected to increase the volume for either of these movements. Similar to the Existing Conditions scenario, no improvements are identified to increase the levels of service for these movements.

## Summary

TranSystems has completed this traffic impact study for the proposed self-storage development to be located at 650 SE Oldham Parkway in Lee's Summit, Missouri. The purpose of this study was to assess the impact of the proposed development on the surrounding transportation system.

The existing conditions show that most movements at the study intersections currently operate at acceptable levels of service. Two movements operate at lower levels of service, however, the traffic volumes for these movements does not minimum thresholds for traffic signal installation. As such, no improvements were identified to increase the level of service for these movements.

The proposed development is projected to generate 34 trips during the Saturday peak hour and 21 trips during the Weekday P.M. peak hour. The traffic generated by the development is relatively low and is projected to have a nominal effect on existing traffic operations. Delays are generally projected to increase by less than one second. As such, all study intersections will continue to operate at the same levels of service as they currently do.

## Appendix A - Figures

| Figure A-1 | Location Map |
| :--- | :--- |
| Figure A-2 | Site Plan |
| Figure A-3 | Existing Conditions Lane Configurations and Peak Hour Volumes |
| Figure A-4 | Existing plus Development Conditions Lane Configurations |
| Figure A-5 | Existing plus Development Conditions Peak Hour Traffic Volumes |







## Appendix B - Trip Generation and Distribution

See attached worksheets.

## Extra Space Traffic Impact Study

Lee's Summit, Missouri
Trip Generation

| Proposed Land Use | Intensity |  | ITE <br> Code | Daily | Saturday Mid-day Peak Hour |  |  |  |  | P.M. Peak Hour |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Total |  | \% In | \% Out | In | Out | Total | \% In | \% Out | In | Out |
| Mini-Warehouse | 121,000 | sf |  | 151 | 183 | 38 | 59\% | 41\% | 22 | 16 | 21 | 47\% | 53\% | 10 | 11 |
|  | Total Development Trips |  |  | 183 | 38 | 硣 |  | 22 | 16 | 21 |  |  | 10 | 11 |

## Notes:

Trip generation estimates based on IOth Edition General Urban/Suburban location

## Extra Space Traffic Impact Study

Lee's Summit, Missouri

## Existing Traffic Volumes <br> Saturday Mid-day Peak Hour



Iccess Drive and Aldi Parking Aisle/Site Drivewa


Access Drive/Home Depot Drive and Oldham Parkway


## Extra Space Traffic Impact Study

Lee's Summit, Missouri

## Existing Traffic Volumes <br> P.M. Peak Hour



Access Drive and Aldi Parking Aisle/Site Drivewa


Access Drive/Home Depot Drive and Oldham Parkway


ㄴํ ํ

## Extra Space Traffic Impact Study Lee's Summit, Missouri

## Existing plus Development Traffic Volumes Saturday Mid-day Peak Hour



Access Drive and Aldi Parking Aisle/Site Driveway


ㄷ N N N N
Access Drive/Home Depot Drive and Oldham Parkway


## Extra Space Traffic Impact Study <br> Lee's Summit, Missouri

## Existing plus Development Traffic Volumes

## P.M. Peak Hour



Access Drive and Aldi Parking Aisle/Site Driveway


Access Drive/Home Depot Drive and Oldham Parkway


## Extra Space Traffic Impact Study

 Lee's Summit, Missouri
## Proposed Development Trips <br> Saturday Mid-day Peak Hour

## Hamblen Road and Access Drive



Access Drive and Aldi Parking Aisle/Site Driveway


Access Drive/Home Depot Drive and Oldham Parkway


## Extra Space Traffic Impact Study

 Lee's Summit, Missouri
## Proposed Development Trips

## P.M. Peak Hour

## Hamblen Road and Access Drive



## Access Drive and Aldi Parking Aisle/Site Driveway



0 ナ $\quad$ の

Access Drive/Home Depot Drive and Oldham Parkway


# Extra Space Traffic Impact Study Lee's Summit, Missouri 

## Trip Distribution <br> INBOUND



Access Drive and Aldi Parking Aisle/Site Driveway


Access Drive/Home Depot Drive and Oldham Parkway


# Extra Space Traffic Impact Study 

## Lee's Summit, Missouri

## Trip Distribution

 OUTBOUND
## Hamblen Road and Access Drive



Access Drive and Aldi Parking Aisle/Site Driveway


Access Drive/Home Depot Drive and Oldham Parkway


## Appendix C - Capacity Analysis Reports

See attached Reports.

| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 5.8 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | 中 ${ }^{\text {c }}$ |  | ${ }^{7}$ | $\uparrow$ |  |  | * |  |  | * |  |
| Traffic Vol, veh/h | 105 | 188 | 171 | 7 | 257 | 34 | 85 | 6 | 30 | 22 | 3 | 49 |
| Future Vol, veh/h | 105 | 188 | 171 | 7 | 257 | 34 | 85 | 6 | 30 | 22 | 3 | 49 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 165 | - | - | 0 | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 114 | 204 | 186 | 8 | 279 | 37 | 92 | 7 | 33 | 24 | 3 | 53 |



HCM 6th TWSC
5: Hamblen Rd \& Access Drive

| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 1.5 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{1}$ |  | 「 |  |  | FT |  | * ${ }^{\text {F }}$ |  |  | 中 ${ }^{\text {P }}$ |  |
| Traffic Vol, veh/h | 32 | 0 | 30 | 0 | 0 | 45 | 9 | 681 | 4 | 0 | 710 | 27 |
| Future Vol, veh/h | 32 | 0 | 30 | 0 | 0 | 45 | 9 | 681 | 4 | 0 | 710 | 27 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |
| RT Channelized | - | - | None |
| Storage Length | 0 | - | 0 | - | - | 0 | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 35 | 0 | 33 | 0 | 0 | 49 | 10 | 740 | 4 | 0 | 772 | 29 |



|  |  |  |  |  | NBL | NBT | NBR EBLn1 EBLn2WBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| Minor Lane/Major Mvmt | SBT | SBR |  |  |  |  |  |
| Capacity (veh/h) | 818 | - | - | 132 | 599 | 625 | - |

HCM 6th TWSC
7: Access Drive \& Aldi Parking Aisle

| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 4.3 |  |  |  |  |  |
| Movement | EBL | EBR | NBL | NBT | SBT | SBR |
| Lane Configurations | Mr |  |  | $\uparrow$ | $\uparrow$ |  |
| Traffic Vol, veh/h | 14 | 40 | 117 | 118 | 23 | 13 |
| Future Vol, veh/h | 14 | 40 | 117 | 118 | 23 | 13 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Free | Free | Free | Free |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | 0 | - | - | - | - | - |
| Veh in Median Storage, \# | 0 | - | - | 0 | 0 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 15 | 43 | 127 | 128 | 25 | 14 |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 3.9 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | 中 ${ }^{\text {c }}$ |  | ${ }^{*}$ | $\uparrow$ |  |  | $\uparrow$ |  |  | $\uparrow$ |  |
| Traffic Vol, veh/h | 130 | 287 | 48 | 4 | 284 | 32 | 39 | 3 | 10 | 25 | 2 | 41 |
| Future Vol, veh/h | 130 | 287 | 48 | 4 | 284 | 32 | 39 | 3 | 10 | 25 | 2 | 41 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 165 | - | - | 0 | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 141 | 312 | 52 | 4 | 309 | 35 | 42 | 3 | 11 | 27 | 2 | 45 |



| Approach | EB | WB | NB | SB |
| :--- | :--- | :---: | ---: | ---: |
| HCM Control Delay, s | 2.3 | 0.1 | 27.1 | 15.3 |
| HCM LOS |  |  | D | C |


| Minor Lane/Major Mvmt | NBLn1 | EBL | EBT | EBR | WBL | WBT | WBR SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Capacity (veh/h) | 219 | 1213 | - | -1193 | - | -424 |  |
| HCM Lane V/C Ratio | 0.258 | 0.116 | - | -0.004 | - | -0.174 |  |
| HCM Control Delay (s) | 27.1 | 8.4 | - | - | 8 | - | -15.3 |
| HCM Lane LOS | D | A | - | - | A | - | - |
| HCM 95th \%tile Q(veh) | 1 | 0.4 | - | - | 0 | - | - |
| C | 0.6 |  |  |  |  |  |  |




| Minor Lane/Major Mvmt | NBL | NBT | NBR EBLn1 | EBLn2WBLn1 | SBT | SBR |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| Capacity (veh/h) | 731 | - | - | 100 | 543 | 571 | - | - |
| HCM Lane V/C Ratio | 0.012 | - | - | 0.62 | 0.172 | 0.051 | - | - |
| HCM Control Delay (s) | 10 | 0.1 | - | 87.2 | 13 | 11.6 | - | - |
| HCM Lane LOS | A | A | - | F | B | B | - | - |
| HCM 95th \%tile Q(veh) | 0 | - | - | 3 | 0.6 | 0.2 | - | - |


| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 5.2 |  |  |  |  |  |
| Movement | EBL | EBR | NBL | NBT | SBT | SBR |
| Lane Configurations | $\mathbf{r}$ |  |  | $-\uparrow$ | $\uparrow$ |  |
| Traffic Vol, veh/h | 7 | 45 | 108 | 58 | 23 | 5 |
| Future Vol, veh/h | 7 | 45 | 108 | 58 | 23 | 5 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Free | Free | Free | Free |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | 0 | - | - | - | - | - |
| Veh in Median Storage, \# | 0 | - | - | 0 | 0 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 8 | 49 | 117 | 63 | 25 | 5 |


| Major/Minor | Minor2 | Major1 |  | Major2 |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Conflicting Flow All | 325 | 28 | 30 | 0 | - | 0 |
| $\quad$ Stage 1 | 28 | - | - | - | - | - |
| Stage 2 | 297 | - | - | - | - | - |
| Critical Hdwy | 6.42 | 6.22 | 4.12 | - | - | - |
| Critical Hdwy Stg 1 | 5.42 | - | - | - | - | - |
| Critical Hdwy Stg 2 | 5.42 | - | - | - | - | - |
| Follow-up Hdwy | 3.518 | 3.318 | 2.218 | - | - | - |
| Pot Cap-1 Maneuver | 669 | 1047 | 1583 | - | - | - |
| $\quad$ Stage 1 | 995 | - | - | - | - | - |
| $\quad$ Stage 2 | 754 | - | - | - | - | - |
| Platoon blocked, \% |  |  |  | - | - | - |
| Mov Cap-1 Maneuver | 617 | 1047 | 1583 | - | - | - |
| Mov Cap-2 Maneuver | 617 | - | - | - | - | - |
| Stage 1 | 918 | - | - | - | - | - |
| Stage 2 | 754 | - | - | - | - | - |


| Approach | EB | NB | SB |
| :--- | ---: | ---: | ---: |
| HCM Control Delay, S | 9 | 4.9 | 0 |
| HCM LOS | A |  |  |


| Minor Lane/Major Mvmt | NBL | NBT EBLn1 | SBT | SBR |  |
| :--- | ---: | ---: | ---: | ---: | :--- |
| Capacity (veh/h) | 1583 | -957 | - | - |  |
| HCM Lane V/C Ratio | 0.074 | -0.059 | - | - |  |
| HCM Control Delay (s) | 7.5 | 0 | 9 | - | - |
| HCM Lane LOS | A | A | A | - | - |
| HCM 95th \%tile Q(veh) | 0.2 | - | 0.2 | - | - |

HCM 6th TWSC
1: Home Depot Driveway/Access Drive \& Oldham Pkwy

| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 6.5 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{*}$ | 虫 |  | ${ }^{*}$ | $\uparrow$ |  |  | \& |  |  | \& |  |
| Traffic Vol, veh/h | 121 | 188 | 171 | 7 | 257 | 39 | 85 | 6 | 30 | 26 | 3 | 53 |
| Future Vol, veh/h | 121 | 188 | 171 | 7 | 257 | 39 | 85 | 6 | 30 | 26 | 3 | 53 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 165 | - | - | 0 | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 132 | 204 | 186 | 8 | 279 | 42 | 92 | 7 | 33 | 28 | 3 | 58 |


| Major/Minor | Major1 | Major2 |  |  |  | Minor1 |  |  | Minor2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | 321 | 0 | 0 | 390 | 0 | 0 | 908 | 898 | 195 | 686 | 970 | 300 |
| Stage 1 | - | - | - | - | - | - | 561 | 561 | - | 316 | 316 | - |
| Stage 2 | - | - | - | - | - | - | 347 | 337 | - | 370 | 654 | - |
| Critical Hdwy | 4.13 | - | - | 4.13 | - |  | 7.33 | 6.53 | 6.93 | 7.33 | 6.53 | 6.23 |
| Critical Hdwy Stg 1 |  | - | - |  | - | - | 6.53 | 5.53 |  | 6.13 | 5.53 |  |
| Critical Hdwy Stg 2 | - | - | - | - | - | - | 6.13 | 5.53 |  | 6.53 | 5.53 | - |
| Follow-up Hdwy | 2.219 | - | - | 2.219 | - |  | 3.519 | 4.019 | 3.319 | 3.519 | 4.019 | 3.319 |
| Pot Cap-1 Maneuver | 1237 | - | - | 1167 | - | - | 243 | 278 | 814 | 347 | 252 | 739 |
| Stage 1 | - | - | - | - | - | - | 480 | 509 | - | 694 | 654 | - |
| Stage 2 | - | - | - | - | - | - | 668 | 640 | - | 623 | 462 |  |
| Platoon blocked, \% |  | - | - |  | - | - |  |  |  |  |  |  |
| Mov Cap-1 Maneuver | 1237 | - | - | 1167 | - |  | 202 | 247 | 814 | 298 | 224 | 739 |
| Mov Cap-2 Maneuver | - | - | - | - | - |  | 202 | 247 |  | 298 | 224 | - |
| Stage 1 | - | - | - | - | - | - | 429 | 455 | - | 620 | 649 | - |
| Stage 2 | - | - | - | - | - | - | 609 | 636 | - | 527 | 413 | - |


| Approach | EB | WB | NB | SB |
| :--- | :--- | :---: | ---: | ---: |
| HCM Control Delay, s | 2.1 | 0.2 | 34.1 | 14.3 |
| HCM LOS |  |  | D | B |


| Minor Lane/Major Mvmt | NBLn1 | EBL | EBT | EBR | WBL | WBT | WBR SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Capacity (veh/h) | 251 | 1237 | - | -1167 | - | -476 |  |
| HCM Lane V/C Ratio | 0.524 | 0.106 | - | -0.007 | - | -0.187 |  |
| HCM Control Delay (s) | 34.1 | 8.3 | - | - | 8.1 | - | -14.3 |
| HCM Lane LOS | D | A | - | - | A | - | - |
| HCM 95th \%tile Q(veh) | 2.8 | 0.4 | - | - | 0 | - | - |
| B | 0.7 |  |  |  |  |  |  |




HCM 6th TWSC
7: Access Drive \& Aldi Parking Aisle

| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 4.4 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | \& |  |  | \$ |  |  | 4 |  |  | 4 |  |
| Traffic Vol, veh/h | 14 | 0 | 40 | 8 | 0 | 8 | 117 | 118 | 21 | 1 | 23 | 13 |
| Future Vol, veh/h | 14 | 0 | 40 | 8 | 0 | 8 | 117 | 118 | 21 | 1 | 23 | 13 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 15 | 0 | 43 | 9 | 0 | 9 | 127 | 128 | 23 | 1 | 25 | 14 |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 4.1 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | 中 ${ }^{\text {c }}$ |  | ${ }^{*}$ | $\uparrow$ |  |  | $\uparrow$ |  |  | $\uparrow$ |  |
| Traffic Vol, veh/h | 137 | 287 | 48 | 4 | 284 | 34 | 39 | 3 | 10 | 27 | 2 | 44 |
| Future Vol, veh/h | 137 | 287 | 48 | 4 | 284 | 34 | 39 | 3 | 10 | 27 | 2 | 44 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 165 | - | - | 0 | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 149 | 312 | 52 | 4 | 309 | 37 | 42 | 3 | 11 | 29 | 2 | 48 |



| Approach | EB | WB | NB | SB |
| :--- | :--- | :---: | ---: | ---: |
| HCM Control Delay, s | 2.4 | 0.1 | 28.3 | 15.7 |
| HCM LOS |  |  | D | C |


| Minor Lane/Major Mvmt | NBLn1 | EBL | EBT | EBR | WBL | WBT | WBR SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Capacity (veh/h) | 210 | 1211 | - | -1193 | - | -415 |  |
| HCM Lane V/C Ratio | 0.269 | 0.123 | - | -0.004 | - | -0.191 |  |
| HCM Control Delay (s) | 28.3 | 8.4 | - | - | 8 | - | -15.7 |
| HCM Lane LOS | D | A | - | - | A | - | - |
| HCM 95th \%tile Q(veh) | 1 | 0.4 | - | - | 0 | - | - |
| H |  | 0.7 |  |  |  |  |  |


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay，s／veh | 3.6 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{1}$ |  | 「 |  |  | 「 |  | ＊$\uparrow$ |  |  | 中 ${ }^{\text {P }}$ |  |
| Traffic Vol，veh／h | 57 | 0 | 86 | 0 | 0 | 32 | 8 | 794 | 4 | 0 | 819 | 42 |
| Future Vol，veh／h | 57 | 0 | 86 | 0 | 0 | 32 | 8 | 794 | 4 | 0 | 819 | 42 |
| Conflicting Peds，\＃／hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |
| RT Channelized | － | － | None |
| Storage Length | 0 | － | 0 | － | － | 0 | － | － | － | － | － | － |
| Veh in Median Storage，\＃ | \＃ | 0 | － | － | 0 | － | － | 0 | － | － | 0 | － |
| Grade，\％ | － | 0 | － | － | 0 | － | － | 0 | － | － | 0 | － |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles，\％ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 62 | 0 | 93 | 0 | 0 | 35 | 9 | 863 | 4 | 0 | 890 | 46 |



HCM 6th TWSC
7: Access Drive \& Aldi Parking Aisle



| Minor Lane/Major Mvmt | NBL | NBT | NBR EBLn1WBLn1 | SBL | SBT | SBR |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| Capacity (veh/h) | 1583 | - | - | 944 | 698 | 1527 | - | - |
| HCM Lane V/C Ratio | 0.074 | - | - | 0.06 | 0.016 | 0.001 | - | - |
| HCM Control Delay (s) | 7.5 | 0 | - | 9.1 | 10.2 | 7.4 | 0 | - |
| HCM Lane LOS | A | A | - | A | B | A | A | - |
| HCM 95th \%tile Q(veh) | 0.2 | - | - | 0.2 | 0 | 0 | - | - |

