STORMWATER MANAGMENT SUMMARY

FOR

PROPOSED TAKE 5 OIL CHANGE

Missouri Hwy 291

Lee's Summit, Missouri

October 7, 2022 Revised September 8, 2023

PREPARED FOR

DRIVEN ASSESTS, L.L.C.

2101 Pearl Street

Boulder, CO 80302

PREPARED BY:

HIGH TIDE CONSULTANTS, LLC 700 CANAL BLVD.

THIBODAUX, LA 70301

(985) 859-8994

SHANE GUIN NUMBER י א אי

SEPTEMBER 8, 2023

Stormwater Management Summary

Introduction:

The purpose of this document is to provide a summary of the pre and post development drainage conditions for the +/- 0.50 acre site located along the west side of Highway 291, and just north of the Meineke Car Care which is located at 320 NE 291 Hwy, Lee's Summit, MO 64086. The site is made up of a vacant grass lot which will be developed into a Take 5 Oil Change facility. This analysis will demonstrate that the proposed developments drainage system will meet the requirements set forth by the City of Lee's Summit.

Methodology:

The hydraulic calculations, for this site, were performed using the SCS Method (TR-55), in accordance with the City of Lee's Summit and APWA Sections 5602 and 5608 requirements. Hydraflow Hydrographs Extension for Autodesk Civil 3D was utilized for the detention calculations. Detention storage data can be found in the appendix of the report, under the Post Development Calculations. A Point of Interest was used to determine the allowable release rate for the developed site. The site has been analyzed for the 2-year, 10-year and 100-year storm events.

Existing Conditions:

The proposed site is located along the west side of Highway 291, and just north of the Meineke Car Care, which is located at 320 NE 291 Hwy, Lee's Summit, MO 64086. The site is located on the northwest side of the intersection of SE Langsford Rd. & NE Hwy 291. The site is currently occupied by a vacant grass lot that sits on approximately 0.50 acres of pervious cover.

The site is contained within an existing retaining wall, and it is bordered by overgrown vegetation to the north and west. There is an existing stream located to the west of the site and the approximate location of the stream buffer can be seen on the Stream Exhibit, which is included in Appendix A. Since no disturbance shall take place beyond the retaining wall that is currently in place, it has been determined that the site can encroach into the 100' stream buffer.

The site has high points on the southwestern property line and slopes northeast towards Highway 291 with a slope of approximately 4.6%. The site drains via sheet flow to an existing roadside ditch located on the eastern side of the property, along Hwy. 291. The point at which this flow exits the property is considered the point of interest for the existing condition. The point of interest can be viewed on the Pre-Development Drainage Plan, which is included in Appendix A.

The site also receives off-site flow from the adjacent strip mall to the south. Approximately 0.09 Acres, from the adjacent strip mall, flows through a flume or sheet flows onto the Take-5 site.

Per the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panel Number 29095C0436G, which is dated 1/20/2017, the site is located in flood zone X.

The time of concentration for the existing condition of the Take-5 site is 18.20 minutes and the SCS Curve Number (CN) value has been determined to be 74.

The time of concentration for the off-site area is 5 minutes and the SCS Curve Number (CN) value has been determined to be 87.

Stormwater ManagementStudy

The total pre-development runoff values for the site are as follows:

Storm Event/Rainfall Return Period	50% / 2 YR	10% / 10 YR	1% / 100 YR	
Off-Site Runoff (Pre DA 1) (CFS):	0.161 CFS	0.883 CFS	1.493 CFS	
Take-5 Site Runoff (DA 2) (CFS):	0.215 CFS	2.752 CFS	5.229 CFS	
Combined Runoff (CFS):	0.284 CFS	3.118 CFS	5.855 CFS	
Allowable Release Rate (CFS):	0.5CFS X 0.5AC = 0.25 CFS	2.0CFS X 0.5AC = 1.0 CFS	3.0CFS X 0.5AC = 1.5 CFS	

A pre-development drainage area exhibit has been provided in Appendix A.

Proposed Development:

For the purposes of this analysis, the proposed development will consist of a 1,415 SF Take 5 Oil Change Facility along with associated parking and access drives.

The redevelopment of the site will increase the impervious area which will require the excess runoff to be stored on site. Green space areas will be provided internally to the parking areas as well as around the entire perimeter of the site.

The Take 5 site receives off-site flow from the adjacent strip mall to the south and this will be rerouted so that it bypasses the Take 5 drainage system. Approximately 0.09 Acres, from the adjacent strip mall, flows through a flume or sheet flows onto the Take-5 site. An inlet will be installed, and this runoff will outfall into the roadside ditch. This will be considered one point of interest for the post-developed condition.

The post-developed site will be broken into two drainage areas. Drainage Area 2 is shown in green on the Post-Development Drainage Plan and is generally the west side of the site. The time of concentration for Drainage Area 2 is 5 minutes and the SCS Curve Number (CN) value has been determined to be 87. Drainage area 2 will be routed into an underground detention basin which is located to the east of the Take 5 building. The underground detention basin will then discharge into the roadside ditch. This will be considered the second point of interest for the post developed condition.

Drainage Area 3 is shown in pink on the Post-Development Drainage Plan and is generally the east side of the site. The time of concentration for Drainage Area 3 is 5 minutes and the SCS Curve Number (CN) value has been determined to be 87. Drainage area 3 will be routed to a detention pond which is located on the east side of the site. The detention pond will then

Stormwater ManagementStudy

discharge into the roadside ditch. This will be considered the third point of interest for the post developed condition.

The total post-development runoff values, into the pond/underground storage, are as follows:

Storm Event/Rainfall Return Period	50% / 2 YR	10% / 10 YR	1% / 100 YR
Off-Site Runoff (Pre DA 1) (CFS):	0.161 CFS	0.883 CFS	1.493 CFS
Take-5 Site Runoff (DA 2) (CFS):	0.431 CFS	2.354 CFS	3.980 CFS
Take-5 Site Runoff (DA 3) (CFS):	0.467 CFS	2.550 CFS	4.312 CFS
Combined Detained Runoff (CFS):	0.227 CFS	0.625 CFS	1.411 CFS
Allowable Release Rate (CFS):	0.5CFS X 0.5AC = 0.25 CFS	2.0CFS X 0.5AC = 1.0 CFS	3.0CFS X 0.5AC = 1.5 CFS

A post-development drainage area exhibit has been provided in Appendix B.

Stormwater Requirements:

Drainage calculations will conform to the requirements of the City of Lee's Summit Storm Drainage Design Criteria, as well as section 5600 of the *Kansas City Metropolitan Chapter American Public Works Association Standard Specifications & Design Criteria.*

Runoff for a portion of the site shall be routed to an on-site detention pond and an underground detention basin, which has been appropriately sized to reduce the postdeveloped runoff exiting the site. Discharge from the pond will be via an outlet structure utilizing a 2" orifice and a 6" orifice, which will both be set at different elevations, followed by a 12" discharge pipe which will outfall into the right-of-way. Discharge from the underground detention basin will be via an outlet structure utilizing a 3" orifice followed by a 12" discharge pipe.

Stormwater ManagementStudy

Summary of On-Site Runoff Calculations:

Storm Event	Pre- Developed	Post- Developed	Allowable Release Rate	Calculated Pond Storage Volume	POND WSE	Calculated Underground Storage Volume	Underground Storage WSE
2-year	0.284 cfs	0.227 cfs	0.5CFS X 0.5AC = 0.25 CFS	267 cuft	982.54 ft	326 cuft	981.63 ft
10- year	3.118 cfs	0.625 cfs	2.0CFS X 0.5AC = 1.0 CFS	2,207 cuft	984.75 ft	2,173 cuft	982.78 ft
100- year	5.855 cfs	1.411 cfs	3.0CFS X 0.5AC = 1.5 CFS	3,703 cuft	985.59 ft	3,992 cuft	983.74 ft

Stormwater Quality:

A stormwater treatment facility has been designed for this site. Even though there are no "Hot Spots" located within the project area, there are large amounts of impervious area. Due to the large amounts of impervious area that could contaminate the stormwater, a treatment facility is necessary. An Extended Dry Detention basin was chosen and designed to treat on-site stormwater discharge. The Extended Dry Detention basin did not provide an acceptable level of service by itself, so catch basin inserts have been added to supplement the detention basin. These calculations can be found in Appendix B.

The 2012 MARC BMP manual has been consulted for the proposed BMP mitigation plan.

The total contributing area draining into the detention facility is 0.5 acres. A required water quality volume of 1,306.8 cuft was calculated. The total available pond volume is 4,505 cuft and the total available underground detention volume is 7,986 cuft, while the combined detention volume plus the water quality volume is 9,001.8 cuft. This leaves an excess volume of 3,489.2 cuft available within the detention facilities.

The Extended Dry Detention Basin, that has been provided for this Take 5, will be a privately maintained and operated facility. Maintenance and inspections shall follow the activities and frequencies listed in Appendix B.

Conclusion:

All the referenced material and supporting documentation can be found below. Based on the findings, the proposed Take 5 Oil Change Facility will not have an adverse effect on the downstream storm system, and it meets the City of Lee's Summit stormwater requirements.

Stormwater ManagementStudy

Appendix A

Stormwater ManagementStudy

ALTA/NSPS LAND TITLE SURVEY

Sec. 5-47-31

SHAFER, KLINE & WARREN, INC.

11250 Corporate Avenue Lenexa. KS 66219-1392 913.888.7800 FAX: 913.888.7868 SURVEYING | ENGINEERING | CONSTRUCTION COPYRIGHT © 2017 SHAFER, KLINE & WARREN, INC.

Byram Realty, LLC 5350 W. 94th Terrace, Suite 201 Prairie Village KS, 66207 Phone: (913) 722–5229

Job No. 170159-010 March 6, 2017 klg

DESCRIPTION:

TRACT I:

The South 150 feet of the East 150 feet of the North 300 feet of the South 902 feet of the East 880 feet of the West One Half of the Northeast Quarter of Section 5, Township 47, Range 31, in Lee's Summit, Jackson County, Missouri, more particularly described as follows: Commencing at the Southwest corner of the Northeast Quarter of said Section 5, Township 47, Range 31; thence South 89 Degrees, 22 Minutes, 09 Seconds East along the South line of the West One Half of said Quarter Section, a distance of 1321.26 feet to the Southeast corner of said West One Half; thence North 00 Degrees, 40 Minutes, 00 Seconds East along the East line of said West One Half, a distance of 602.00 feet to the point of beginning; thence North 89 Degrees, 22 Minutes, 09 Seconds East, parallel with the South line of said West One Half, a distance of 150.00 feet; thence North 00 Degrees, 40 Minutes, 00 Seconds East, parallel with the East line of said West One Half, a distance of 150.00 feet; thence South 89 Degrees, 22 Minutes, 09 Seconds East, parallel with the South line of said West One Half, a distance of 150.00 feet to a point on the East line of aid West One Half; thence South 00 Degrees, 40 Minutes, 00 seconds West along said East line, a distance of 150.00 feet to the point of beginning. TRACT II:

Commencing at the Southwest corner of the East 1/2 of the Northeast 1/4 of Section 5, Township 47, Range 31, Lee's Summit, Jackson County, Missouri; thence along the West line of said 1/2 of 1/4 Section North 2 Degrees, 33 Minutes, 49 Seconds East 602 feet to the true point of beginning of this tract; thence along said West line North 2 Degrees, 33 Minutes, 49 Seconds East 478.79 feet; thence South 88 Degrees, 27 Minutes, 48 Seconds East 152.53 feet to a point on the West line of the Right-of-Way of M-291; thence along said Right-or-Way line as follows; South 16 Degrees, 32 Minutes, 36 Seconds West 73.03 feet to a point 135 feet opposite center line Station 117+00; thence South 11 Degrees, 23 Minutes, 57 Seconds West 200 feet to a point 135 feet opposite center line Station 119+00; thence South 1 Degree, 11 Minutes, 44 Seconds West 101.61 feet to a point 117 feet opposite center line Station 120+00; thence parallel to said center line South 11 Degrees, 23 Minutes, 57 Seconds West 50 feet; thence South 64 Degrees, 21 Minutes, 40 Seconds West 66.40 feet to a point 170 feet opposite center line Station 120+90; thence parallel to said center line South 11 Degrees, 23 Minutes, 57 Seconds West 31.03 feet; thence leaving said Right-of-Way North 87 Degrees, 26 Minutes, 43 Seconds West 35.61 feet to the true point of beginning.

TITLE NOTE:

Title information shown hereon was taken from Old Republic National Title Insurance Company commitment for Title insurance No. SKC0037555C and Dated October 18, 2016 at 8:00 A.M.

c. Easement granted to Missouri Public Service Corporation as set forth in instrument filed June 20, 1950, under Document No. 565542 in Book 862 at Page 458. (Affects all of Tract I) d. Easement granted to the City of Lee's Summit as set forth in instrument filed July 6, 1962, under Document No. 792933 in Book 1577 ac Page 301. (Does not Affect)

e. Easements for the benefit of the premises in question as set forth in Case No. 108618 filed November 20, 1950 under Document No. 571966 in Book 899 at Page 171, and as defined by instrument filed under Document No. 792062 in Book 1575 at Page 21. (Affects Tract I) f. Easement over a portion of the premises in question, granted to The State of Missouri, by the instrument recorded as Document No. 653850 in Book 1302 at Page 81. (Affects Subject Property)

g. Easement and Right-of-Way Agreement granted to The City of Lee's Summit, by the instrument filed May 23, 1962 as Document No. 790138 in Bock 1569 at Page 695. (as shown hereon)

h. Easement and Right-of-Way Agreement granted to The City of Lee's Summit, by the instrument filed June 11, 1962, under Document No. 791375 in Book 1573 at Page 199. (As shown hereon)

i. Easement over a portion of the premises in question, granted to The City of Lee's Summit, Missouri, by the instrument recorded as Document No. 868740 in Book 1781 at Page 176. (As shown hereon)

i. Lack of abutter's rights of direct access to Highway No. 291 from the premises in question as set forth in instrument filed January 9, 1969, under Document No. 1–31092 in Book 189 at Page 661, except such rights of access as provided therein. (Affects subject property not plottable)

k. Terms and provisions and easement contained in Easement Agreement by and between Royal Acres Limited, a Missouri Limited Partnership and Pine Woods Associates, a Missouri general partnership, filed for record May 9, 1986, as Document No. I-688562 in Book I1536 at Page 2123. (As shown hereon)

I. Sanitary Sewer Easement granted to the City of Lee's Summit as set forth in instrument filed October 15, 2002, under Document No. 2002/0091852. (As shown hereon)

To: Vivion Properties, LLC; LSMO I, LLC; Bennisonvestments, LLC; Silverlake Holdings, LLC; and Old Republic National Title Insurance Company This is to certify that this map or plat and the survey on which it is based were made in accordance with the 2016 Minimum Standard Detail Requirements for ALTA/NSPS Land Title Surveys, jointly established and adopted by ALTA and NSPS, and includes items 1, 3, 4, 5, 6a, 8, and 11 of Table A thereof. The fieldwork was completed on February 24, 2017.

FLOOD NOTE:

January 20, 2017

General Notes:

The horizontal datum is based on the State plane coordinate system MO West Zone NAD 83

Adjusted to Ground Plane CAF=0.999901213

Elevations shown hereon are based upon NAVD88 Datum.

Contours shown hereon are at 1' contour intervals.

The accuracy standard for this survey is in accordance with type "URBAN"

ZONING NOTE:

No Zoning report or letter was furnished at the time of survey.

BENCHMARK 1 ELEV.: 982.13 Set square cut in the top of the South side of a 15" light pole base 100' \pm North of the Northeast property corner. East side of parking lot $70' \pm$ West of 291 HWY.

ELEV.: 991.62 BENCHMARK 2 Existing square cut on back of curb 50' \pm East Northeast of the Northeast corner of meineke on the North side drive at the flume.

 $Area = 75,218 \pm Sq. Ft. or 1.727 \pm Acres$

. Visual indications of utilities are as shown. Underground locations shown, as furnished by the respective utility companies, are approximate and shall be verified in the field at the time of construction. For actual field locations of underground utilities, call 1-800-344-7233. 2. The contractor shall be responsible for contacting all utility companies for

field location of all underground utility lines prior to any excavation and for the coordination and scheduling with utility owners of all work required to resolve conflicts with installations, constructions, excavations, removals, placements, relocation and other miscellaneous work.

Robert Craig Sandlin, PLS-2016000169 Shafer, Kline & Warren, Inc. Corporate Certificate/License No. 000003

Job No. 170159—010 Sec. 5-47-31

Jackson County Missouri 170159–010 SUR.DWG

This property lies within flood Zone X, defined as areas determined to be outside the limits of the 0.2% annual chance flood plane, and Other Flood areas as shown on the Flood Insurance rate map prepared by the Federal Emergency Management Agency for the City of Overland Park, Johnson County, Kansas, Community No. 29 174, Panel No. 0436G and dated

National Flood Hazard Layer FIRMette

0

250

500

1,000

1,500

Legend

94°22'3"W 38°55'24"N SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) Zone A. V. A9 With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to FEE Levee. See Notes. Zone X OTHER AREAS OF FLOOD HAZARD Area with Flood Risk due to Levee Zone D NO SCREEN Area of Minimal Flood Hazard Zone X 948 1 FEET Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D 959 - - - - Channel, Culvert, or Storm Sewer GENERAL STRUCTURES LIIII Levee, Dike, or Floodwall City of Lee's Summit 20.2 Cross Sections with 1% Annual Chance 290174 17.5 Water Surface Elevation AREA OF MINIMAL FLOOD HAZARD **Coastal Transect** Zone AE Base Flood Elevation Line (BFE) T47N R31W S5 Limit of Study Jurisdiction Boundary **Coastal Transect Baseline** OTHER **Profile Baseline** FEATURES Hydrographic Feature 961 FEET **Digital Data Available** No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 9/29/2022 at 11:09 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for

Feet 1:6,000 2,000

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

94°21'25"W 38°54'56"N

unmapped and unmodernized areas cannot be used for

regulatory purposes.

Web Soil Survey National Cooperative Soil Survey

Conservation Service

MAP	LEGEND	MAP INFORMATION			
Area of Interest (AOI) Area of Interest (AOI)	Spoil Area	The soil surveys that comprise your AOI were mapped at 1:24,000.			
Soils Soil Map Unit Polygons	 Very Stony Spot Wet Spot 	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can car			
Soil Map Unit Lines Soil Map Unit Points	 ✓ Other ✓ Special Line Features 	misunderstanding of the detail of mapping and accuracy of line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more de			
Special Point Features Blowout	Water Features Streams and Canals	Scale. Please rely on the bar scale on each map sheet for map			
Borrow Pit K Clay Spot	Transportation +++ Rails	measurements. Source of Map: Natural Resources Conservation Service			
Closed Depression	US Routes	Coordinate System: Web Mercator (EPSG:3857)			
🔹 Gravelly Spot	Major Roads	projection, which preserves direction and shape but distort distance and area. A projection that preserves area, such a Albers equal-area conic projection, should be used if more			
Lava Flow	Background Aerial Photography	accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified c			
Mine or Quarry		of the version date(s) listed below. Soil Survey Area: Jackson County, Missouri			
 Perennial Water Detroit of the second s		Survey Area Data: version 24, Aug 31, 2022 Soil map units are labeled (as space allows) for map scale 1:50.000 or larger.			
Saline Spot		Date(s) aerial images were photographed: Sep 6, 2019– 16, 2019			
Sandy SpotSeverely Eroded Spot		The orthophoto or other base map on which the soil lines we compiled and digitized probably differs from the backgroun			
SinkholeSlide or Slip		shifting of map unit boundaries may be evident.			
ø Sodic Spot					

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
10082	Arisburg-Urban land complex, 1 to 5 percent slopes	0.0	1.5%
10180	Udarents-Urban land-Sampsel complex, 2 to 5 percent slopes	2.1	98.5%
Totals for Area of Interest		2.1	100.0%

OFF-SITE DRAINAGE	AREA 1 TOTAL RUNOFF:	ON-SITE DRAINAGE AF	REA 2 TOTAL RUNOFF:	COMBINED PRE-DEVELOPED TOTAL RUNOFF:		
RETURN PERIOD	Q (CFS)	RETURN PERIOD	Q (CFS)	RETURN PERIOD	Q (CFS)	
2 - YEAR	0.161	2 - YEAR	0.215	2 - YEAR	0.284	
10 - YEAR	0.883	10 - YEAR	2.752	10 - YEAR	3.118	
100 - YEAR	1.493	100 - YEAR	5.229	100 - YEAR	5.855	

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Watershed Model Schematic	1
Hydrograph Return Period Recap	2

2 - Year

Summary Report	3
Hydrograph Reports	4
Hydrograph No. 1, SCS Runoff, Pre Off-Site Area (Pre DA 1)(Bypass Site)	4
Hydrograph No. 2, SCS Runoff, Pre On-Site Area (DA 2).	5
TR-55 Tc Worksheet	6
Hydrograph No. 3, Combine, Combined Pre-Developed Flow	7

10 - Year

Summary Report	8
Hydrograph Reports	9
Hydrograph No. 1, SCS Runoff, Pre Off-Site Area (Pre DA 1)(Bypass Site)	. 9
Hydrograph No. 2, SCS Runoff, Pre On-Site Area (DA 2)	10
Hydrograph No. 3, Combine, Combined Pre-Developed Flow	11

100 - Year

Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Pre Off-Site Area (Pre DA 1)(Bypass Site)	••••••
Hydrograph No. 2, SCS Runoff, Pre On-Site Area (DA 2)	
Hydrograph No. 3, Combine, Combined Pre-Developed Flow	

<u>Legend</u>

<u>Hyd.</u>	<u>Origin</u>	Description
1	SCS Runoff	Pre Off-Site Area (Pre DA 1)(Bypass Site)
2	SCS Runoff	Pre On-Site Area (DA 2)
3	Combine	Combined Pre-Developed Flow
4	SCS Runoff	Post Off-Site Area (Post DA 1)(Diverted)
5	SCS Runoff	Post On-Site Area 2 (Post DA 2)
6	Reservoir	Chamber Flow
7	SCS Runoff	Post On-Site Area 3 (Post DA 3)
8	Reservoir	Pond Flow
9	Combine	Combined Undetained Runoff
10	Combine	Combined Detained Runoff

Project: Lees Summit Hydrographs_2023-09-01.gpw

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd.	Hydrograph	Inflow	Peak Outflow (cfs)						Hydrograph		
No.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff			0.161			0.883			1.493	Pre Off-Site Area (Pre DA 1)(Bypass
2	SCS Runoff			0.215			2.752			5.229	Pre On-Site Area (DA 2)
3	Combine	1, 2		0.284			3.118			5.855	Combined Pre-Developed Flow
4	SCS Runoff			0.161			0.883			1.493	Post Off-Site Area (Post DA 1)(Divert
5	SCS Runoff			0.431			2.354			3.980	Post On-Site Area 2 (Post DA 2)
6	Reservoir	5		0.106			0.264			0.347	Chamber Flow
7	SCS Runoff			0.467			2.550			4.312	Post On-Site Area 3 (Post DA 3)
8	Reservoir	7		0.122			0.362			1.071	Pond Flow
9	Combine	5, 7,		0.897			4.903			8.292	Combined Undetained Runoff
10	Combine	6, 8,		0.227			0.625			1.411	Combined Detained Runoff
					00.01 a						

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

		(cuft)		(ft)	(cuft)	Description	
61 2	716	326				Pre Off-Site Area (Pre DA 1)(Bypass	
15 2	726	812				Pre On-Site Area (DA 2)	
84 2	720	1,138	1, 2			Combined Pre-Developed Flow	
61 2	716	326				Post Off-Site Area (Post DA 1)(Divert	
31 2	716	869				Post On-Site Area 2 (Post DA 2)	
06 2	724	860	5	981.63	326	Chamber Flow	
67 2	716	942				Post On-Site Area 3 (Post DA 3)	
22 2	724	941	7	982.54	267	Pond Flow	
97 2	716	1,811	5, 7,			Combined Undetained Runoff	
27 2	724	1,801	6, 8,			Combined Detained Runoff	
						Combined Detained Runoff	
raph	s_2023-0	s_2023-09-01.gpw	s_2023-09-01.gpw Return P	s_2023-09-01.gpw Return Period: 2 Ye	s_2023-09-01.gpw Return Period: 2 Year	s_2023-09-01.gpw Return Period: 2 Year Thursday, 0	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

Pre Off-Site Area (Pre DA 1)(Bypass Site)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.161 cfs
Storm frequency	= 2 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 326 cuft
Drainage area	= 0.090 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.050 x 98) + (0.040 x 74)] / 0.090

4

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

Pre On-Site Area (DA 2)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.215 cfs
Storm frequency	= 2 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 812 cuft
Drainage area	= 0.500 ac	Curve number	= 74*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 18.16 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.500 x 74)] / 0.500

Thursday, 09 / 7 / 2023

5

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

Pre On-Site Area (DA 2)

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 259.5 = 2.20 = 4.60		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 18.16	+	0.00	+	0.00	=	18.16
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 0.00 = 0.00 = Paved =0.00		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							18.16 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

Combined Pre-Developed Flow

Hydrograph type Storm frequency	= Combine = 2 vrs	Peak discharge Time to peak	= 0.284 cfs = 720 min
Time interval	$= 2 \min$	Hyd. volume	= 1,138 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 0.590 ac

7

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
1	SCS Runoff	0.883	2	716	1,916				Pre Off-Site Area (Pre DA 1)(Bypass	
2	SCS Runoff	2.752	2	724	8,616				Pre On-Site Area (DA 2)	
3	Combine	3.118	2	720	10,532	1, 2			Combined Pre-Developed Flow	
4	SCS Runoff	0.883	2	716	1,916				Post Off-Site Area (Post DA 1)(Divert	
5	SCS Runoff	2.354	2	716	5,109				Post On-Site Area 2 (Post DA 2)	
6	Reservoir	0.264	2	736	5,099	5	982.78	2,173	Chamber Flow	
7	SCS Runoff	2.550	2	716	5,535				Post On-Site Area 3 (Post DA 3)	
8	Reservoir	0.362	2	728	5,534	7	984.75	2,207	Pond Flow	
9	Combine	4.903	2	716	10,643	5, 7,			Combined Undetained Runoff	
10	Combine	0.625	2	728	10,633	6, 8,			Combined Detained Runoff	
									Combined Detained Runoff	
Lee	s Summit Hyd	drographs	s_2023-0)9-01.gpw	Return P	eriod: 10 Y	/ /ear	Thursday, 0)9 / 7 / 2023	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

Pre Off-Site Area (Pre DA 1)(Bypass Site)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.883 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 1,916 cuft
Drainage area	= 0.090 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method states and s	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.80 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.050 x 98) + (0.040 x 74)] / 0.090

9

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

Pre On-Site Area (DA 2)

Hydrograph type	= SCS Runoff	Peak discharge	= 2.752 cfs
Storm frequency	= 10 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 8,616 cuft
Drainage area	= 0.500 ac	Curve number	= 74*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 18.16 min
Total precip.	= 7.80 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.500 x 74)] / 0.500

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

Combined Pre-Developed Flow

Hydrograph type Storm frequency	= Combine = 10 yrs	Peak discharge Time to peak	= 3.118 cfs = 720 min
Time interval	= 2 min	Hyd. volume	= 10,532 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 0.590 ac

11

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. Hydrograph No. type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
1 SCS Runoff	1.493	2	716	3,360				Pre Off-Site Area (Pre DA 1)(Bypass	
2 SCS Runoff	5.229	2	724	16,670				Pre On-Site Area (DA 2)	
3 Combine	5.855	2	720	20,030	1, 2			Combined Pre-Developed Flow	
4 SCS Runoff	1.493	2	716	3,360				Post Off-Site Area (Post DA 1)(Divert	
5 SCS Runoff	3.980	2	716	8,959				Post On-Site Area 2 (Post DA 2)	
6 Reservoir	0.347	2	744	8,949	5	983.74	3,992	Chamber Flow	
7 SCS Runoff	4.312	2	716	9,705				Post On-Site Area 3 (Post DA 3)	
8 Reservoir	1.071	2	724	9,705	7	985.59	3,703	Pond Flow	
9 Combine	8.292	2	716	18,664	5, 7,			Combined Undetained Runoff	
10 Combine	1.411	2	724	18,654	6, 8,			Combined Detained Runoff	
								Combined Detained Runoff	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

Pre Off-Site Area (Pre DA 1)(Bypass Site)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.493 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 3,360 cuft
Drainage area	= 0.090 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 12.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.050 x 98) + (0.040 x 74)] / 0.090

13

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

Pre On-Site Area (DA 2)

Hydrograph type	= SCS Runoff	Peak discharge	= 5.229 cfs
Storm frequency	= 100 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 16,670 cuft
Drainage area	= 0.500 ac	Curve number	= 74*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 18.16 min
Total precip.	= 12.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.500 x 74)] / 0.500

14

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

Combined Pre-Developed Flow

Hydrograph type Storm frequency	= Combine = 100 vrs	Peak discharge Time to peak	= 5.855 cfs = 720 min
Time interval	$= 2 \min$	Hyd. volume	= 20,030 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 0.590 ac

15

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Return Period	Intensity-Du	uration-Frequency E	quation Coefficients	(FHA)
(Yrs)	В	D	E	(N/A)
1	0.0000	0.0000	0.0000	
2	80.1702	15.0000	0.9000	
3	0.0000	0.0000	0.0000	
5	0.0000	0.0000	0.0000	
10	183.3473	19.2000	1.0096	
25	197.2999	18.6000	0.9937	
50	235.4014	19.9000	1.0020	
100	252.3450	19.7000	0.9969	

File name: IDF Curve APWA5600.IDF

Intensity = B / (Tc + D)^E

Return					Intens	ity Values	(in/hr)												
(Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60							
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00							
2	5.41	4.42	3.76	3.27	2.90	2.61	2.37	2.18	2.01	1.87	1.75	1.65							
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00							
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00							
10	7.35	6.08	5.18	4.52	4.00	3.59	3.26	2.98	2.74	2.54	2.37	2.22							
25	8.53	7.05	6.00	5.23	4.63	4.16	3.77	3.45	3.18	2.95	2.75	2.58							
50	9.39	7.82	6.70	5.86	5.20	4.68	4.25	3.90	3.60	3.34	3.12	2.92							
100	10.32	8.59	7.35	6.43	5.71	5.14	4.67	4.28	3.95	3.67	3.42	3.21							

Tc = time in minutes. Values may exceed 60.

tesere to end and the series and the series and the series of the series	\Users\Scott Poirrier\High Tide	Consultant Dropbox\Projects\Reference Material\LADOTD\New\LADOTD Region 1.pc
--	---------------------------------	--

	Rainfall Precipitation Table (in)										
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr			
SCS 24-hour	1.37	2.20	0.00	3.30	7.80	9.60	11.10	12.60			
SCS 6-Hr	0.00	1.80	0.00	0.00	2.60	0.00	0.00	4.00			
Huff-1st	0.00	1.55	0.00	2.75	4.00	5.38	6.50	8.00			
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Custom	1.37	1.75	0.00	2.80	3.90	5.25	6.00	7.10			

Appendix B

Stormwater ManagementStudy

THE PROJECT SITE IS INCLUDED WITHIN THE WEST PRAIRIE LEE WATERSHED AREA AS SHOWN ON THE CITY OF LEE'S SUMMIT WATERSHED & OUTFALL MAP

OFF-SITE DRAINAGE AREA 1 TOTAL RUNOFF (DIVERTED):

RETURN PERIOD	Q (CFS)						
2 - YEAR	0.161						
10 - YEAR	0.883						
100 - YEAR	1.493						
ON-SITE DRAINAGE AREA 2 TOTA	L RUNOFF:						
RETURN PERIOD	Q (CFS)						
2 - YEAR	0.431						
10 - YEAR	2.354						
100 - YEAR	3.980						
OFF-SITE DRAINAGE AREA 3 TOTAL RUNOFF:							
RETURN PERIOD	Q (CFS)						
2 - YEAR	0.467						
10 - YEAR	2.550						
100 - YEAR	4.312						
TOTAL COMBINED DETAINED RUN	NOFF:						
RETURN PERIOD	Q (CFS)						
2 - YEAR	0.227						
10 - YEAR	0.625						
100 - YEAR	1.411						

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Watershed Model Schematic	1
Hydrograph Return Period Recap	2

2 - Year

Summary Report	3
Hydrograph Reports	4
Hydrograph No. 4, SCS Runoff, Post Off-Site Area (Post DA 1)(Diverted)	4
Hydrograph No. 5, SCS Runoff, Post On-Site Area 2 (Post DA 2)	5
Hydrograph No. 6, Reservoir, Chamber Flow	6
Pond Report - Underground Detention	7
Hydrograph No. 7, SCS Runoff, Post On-Site Area 3 (Post DA 3)	. 8
Hydrograph No. 8, Reservoir, Pond Flow	. 9
Pond Report - Detention Pond	10
Hydrograph No. 9, Combine, Combined Undetained Runoff	11
Hydrograph No. 10, Combine, Combined Detained Runoff	12

10 - Year

Summary Report	13
Hydrograph Reports	14
Hydrograph No. 4, SCS Runoff, Post Off-Site Area (Post DA 1)(Diverted)	14
Hydrograph No. 5, SCS Runoff, Post On-Site Area 2 (Post DA 2)	15
Hydrograph No. 6, Reservoir, Chamber Flow	16
Hydrograph No. 7, SCS Runoff, Post On-Site Area 3 (Post DA 3)	17
Hydrograph No. 8, Reservoir, Pond Flow	18
Hydrograph No. 9, Combine, Combined Undetained Runoff	19
Hydrograph No. 10, Combine, Combined Detained Runoff	20

100 - Year

I

Summary Report	21
Hydrograph Reports	22
Hydrograph No. 4, SCS Runoff, Post Off-Site Area (Post DA 1)(Diverted)	22
Hydrograph No. 5, SCS Runoff, Post On-Site Area 2 (Post DA 2)	23
Hydrograph No. 6, Reservoir, Chamber Flow	24
Hydrograph No. 7, SCS Runoff, Post On-Site Area 3 (Post DA 3)	25
Hydrograph No. 8, Reservoir, Pond Flow	
Hydrograph No. 9, Combine, Combined Undetained Runoff	27
Hydrograph No. 10, Combine, Combined Detained Runoff	28
)F Report	29

<u>Legend</u>

<u>Hyd.</u>	<u>Origin</u>	Description
1	SCS Runoff	Pre Off-Site Area (Pre DA 1)(Bypass Site)
2	SCS Runoff	Pre On-Site Area (DA 2)
3	Combine	Combined Pre-Developed Flow
4	SCS Runoff	Post Off-Site Area (Post DA 1)(Diverted)
5	SCS Runoff	Post On-Site Area 2 (Post DA 2)
6	Reservoir	Chamber Flow
7	SCS Runoff	Post On-Site Area 3 (Post DA 3)
8	Reservoir	Pond Flow
9	Combine	Combined Undetained Runoff
10	Combine	Combined Detained Runoff

Project: Lees Summit Hydrographs_2023-09-01.gpw

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd.	Hydrograph	Inflow	Peak Outflow (cfs)							Hydrograph		
No.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description	
1	SCS Runoff			0.161			0.883			1.493	Pre Off-Site Area (Pre DA 1)(Bypass	
2	SCS Runoff			0.215			2.752			5.229	Pre On-Site Area (DA 2)	
3	Combine	1, 2		0.284			3.118			5.855	Combined Pre-Developed Flow	
4	SCS Runoff			0.161			0.883			1.493	Post Off-Site Area (Post DA 1)(Divert	
5	SCS Runoff			0.431			2.354			3.980	Post On-Site Area 2 (Post DA 2)	
6	Reservoir	5		0.106			0.264			0.347	Chamber Flow	
7	SCS Runoff			0.467			2.550			4.312	Post On-Site Area 3 (Post DA 3)	
8	Reservoir	7		0.122			0.362			1.071	Pond Flow	
9	Combine	5, 7,		0.897			4.903			8.292	Combined Undetained Runoff	
10	Combine	6, 8,		0.227			0.625			1.411	Combined Detained Runoff	
					00.01 a							

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

		(cuft)		(ft)	(cuft)	Description
61 2	716	326				Pre Off-Site Area (Pre DA 1)(Bypass
15 2	726	812				Pre On-Site Area (DA 2)
84 2	720	1,138	1, 2			Combined Pre-Developed Flow
61 2	716	326				Post Off-Site Area (Post DA 1)(Divert
31 2	716	869				Post On-Site Area 2 (Post DA 2)
06 2	724	860	5	981.63	326	Chamber Flow
67 2	716	942				Post On-Site Area 3 (Post DA 3)
22 2	724	941	7	982.54	267	Pond Flow
97 2	716	1,811	5, 7,			Combined Undetained Runoff
27 2	724	1,801	6, 8,			Combined Detained Runoff
raph	s_2023-0	s_2023-09-01.gpw	s_2023-09-01.gpw Return P	s_2023-09-01.gpw Return Period: 2 Ye	s_2023-09-01.gpw Return Period: 2 Year	s_2023-09-01.gpw Return Period: 2 Year Thursday, 0

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

Post Off-Site Area (Post DA 1)(Diverted)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.161 cfs
Storm frequency	= 2 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 326 cuft
Drainage area	= 0.090 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.050 x 98) + (0.040 x 74)] / 0.090

4

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 5

Post On-Site Area 2 (Post DA 2)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.431 cfs
Storm frequency	= 2 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 869 cuft
Drainage area	= 0.240 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.130 x 98) + (0.110 x 74)] / 0.240

5

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 6

Chamber Flow

Hydrograph type	= Reservoir	Peak discharge	= 0.106 cfs
Storm frequency	= 2 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 860 cuft
Inflow hyd. No.	= 5 - Post On-Site Area 2 (P	ost DA a2) Elevation	= 981.63 ft
Reservoir name	= Underground Detention	Max. Storage	= 326 cuft

Storage Indication method used.

6

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Pond No. 2 - Underground Detention

Pond Data

UG Chambers -Invert elev. = 982.00 ft, Rise x Span = $3.75 \times 6.42 \text{ ft}$, Barrel Len = 81.35 ft, No. Barrels = 3, Slope = 0.00%, Headers = Yes **Encasement -**Invert elev. = 981.25 ft, Width = 7.42 ft, Height = 5.50 ft, Voids = 40.00%

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	981.25	n/a	0	0
0.55	981.80	n/a	471	471
1.10	982.35	n/a	860	1,331
1.65	982.90	n/a	1,074	2,404
2.20	983.45	n/a	1,051	3,456
2.75	984.00	n/a	1,013	4,469
3.30	984.55	n/a	956	5,425
3.85	985.10	n/a	871	6,296
4.40	985.65	n/a	730	7,026
4.95	986.20	n/a	488	7,515
5.50	986.75	n/a	471	7,986

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 12.00	3.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 12.00	3.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 981.25	981.25	0.00	0.00	Weir Type	=			
Length (ft)	= 100.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.20	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	y Contour)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

	_	_											
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	981.25	0.00	0.00									0.000
0.55	471	981.80	0.15 oc	0.14 ic									0.139
1.10	1,331	982.35	0.22 oc	0.22 ic									0.217
1.65	2,404	982.90	0.28 oc	0.28 ic									0.275
2.20	3,456	983.45	0.33 oc	0.32 ic									0.324
2.75	4,469	984.00	0.37 oc	0.37 ic									0.366
3.30	5,425	984.55	0.41 oc	0.40 ic									0.405
3.85	6.296	985.10	0.44 oc	0.44 ic									0.440
4.40	7,026	985.65	0.48 oc	0.47 ic									0.472
4.95	7.515	986.20	0.51 oc	0.50 ic									0.503
5.50	7,986	986.75	0.55 oc	0.53 ic									0.532
	,												

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 7

Post On-Site Area 3 (Post DA 3)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.467 cfs
Storm frequency	= 2 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 942 cuft
Drainage area	= 0.260 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.140 x 98) + (0.120 x 74)] / 0.260

8

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 8

Pond Flow

Hydrograph type	= Reservoir	Peak discharge	= 0.122 cfs
Storm frequency	= 2 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 941 cuft
Inflow hyd. No.	= 7 - Post On-Site Area 3 (Post	DAAaS.) Elevation	= 982.54 ft
Reservoir name	= Detention Pond	Max. Storage	= 267 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Pond No. 1 - Detention Pond

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 981.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	981.00	11	0	0
1.00	982.00	183	79	79
2.00	983.00	547	349	428
3.00	984.00	1,047	783	1,211
4.00	985.00	1,642	1,333	2,544
5.00	986.00	2,299	1,961	4,505

Culvert / Orifice Structures

[A] [B] [C] [PrfRsr] [A] [B] [C] [D] = 12.00 2.00 6.00 = 0.00 0.00 0.00 0.00 Rise (in) Inactive Crest Len (ft) Span (in) = 12.00 2.00 6.00 1.00 Crest El. (ft) = 0.00 0.00 0.00 0.00 No. Barrels = 1 16 Weir Coeff. = 3.33 3.33 3.33 3.33 1 1 Invert El. (ft) = 981.00 981.00 984.50 981.00 Weir Type = -------------= 50.00 0.00 0.00 4.00 Multi-Stage No No Length (ft) = No No Slope (%) = 0.20 0.00 0.00 n/a N-Value = .013 .013 .013 n/a = 0.60 0.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Contour) Orifice Coeff. Multi-Stage = n/a Yes Yes Yes TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

-	-	-											
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	981.00	0.00	0.00	0.00	0.00							0.000
1.00	79	982.00	0.10 oc	0.10 ic	0.00	0.00							0.095
2.00	428	983.00	0.14 oc	0.14 ic	0.00	0.00							0.140
3.00	1,211	984.00	0.17 oc	0.17 ic	0.00	0.00							0.175
4.00	2.544	985.00	0.68 oc	0.19 ic	0.47 ic	0.00							0.668
5.00	4,505	986.00	1.27 oc	0.21 ic	1.06 ic	0.00							1.266

10

Weir Structures

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 9

Combined Undetained Runoff

Hydrograph type Storm frequency	= Combine = 2 vrs	Peak discharge Time to peak	= 0.897 cfs = 716 min
Time interval	$= 2 \min$	Hyd. volume	= 1,811 cuft
Inflow hyds.	= 5, 7	Contrib. drain. area	= 0.500 ac

11

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 10

Combined Detained Runoff

Hydrograph type	= Combine	Peak discharge	= 0.227 cfs
Storm frequency	= 2 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 1,801 cuft
Inflow hyds.	= 6,8	Contrib. drain. area	= 0.000 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.883	2	716	1,916				Pre Off-Site Area (Pre DA 1)(Bypass
2	SCS Runoff	2.752	2	724	8,616				Pre On-Site Area (DA 2)
3	Combine	3.118	2	720	10,532	1, 2			Combined Pre-Developed Flow
4	SCS Runoff	0.883	2	716	1,916				Post Off-Site Area (Post DA 1)(Divert
5	SCS Runoff	2.354	2	716	5,109				Post On-Site Area 2 (Post DA 2)
6	Reservoir	0.264	2	736	5,099	5	982.78	2,173	Chamber Flow
7	SCS Runoff	2.550	2	716	5,535				Post On-Site Area 3 (Post DA 3)
8	Reservoir	0.362	2	728	5,534	7	984.75	2,207	Pond Flow
9	Combine	4.903	2	716	10,643	5, 7,			Combined Undetained Runoff
10	Combine	0.625	2	728	10,633	6, 8,			Combined Detained Runoff
Lee	s Summit Hyd	drographs	s 2023-()9-01.gpw	Return P	eriod: 10 Y	′ear	Thursday, 0	09 / 7 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

Post Off-Site Area (Post DA 1)(Diverted)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.883 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 1,916 cuft
Drainage area	= 0.090 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.80 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.050 x 98) + (0.040 x 74)] / 0.090

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 5

Post On-Site Area 2 (Post DA 2)

Hydrograph type	= SCS Runoff	Peak discharge	= 2.354 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 5,109 cuft
Drainage area	= 0.240 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.80 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.130 x 98) + (0.110 x 74)] / 0.240

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 6

Chamber Flow

Hydrograph type	= Reservoir	Peak discharge	= 0.264 cfs
Storm frequency	= 10 yrs	Time to peak	= 736 min
Time interval	= 2 min	Hyd. volume	= 5,099 cuft
Inflow hyd. No.	= 5 - Post On-Site Area 2 (Post	DAa2.) Elevation	= 982.78 ft
Reservoir name	= Underground Detention	Max. Storage	= 2,173 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 7

Post On-Site Area 3 (Post DA 3)

Hydrograph type	= SCS Runoff	Peak discharge	= 2.550 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 5,535 cuft
Drainage area	= 0.260 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.80 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.140 x 98) + (0.120 x 74)] / 0.260

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 8

Pond Flow

Hydrograph type	= Reservoir	Peak discharge	= 0.362 cfs
Storm frequency	= 10 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 5,534 cuft
Inflow hyd. No.	= 7 - Post On-Site Area 3 (Post	DAAaS.) Elevation	= 984.75 ft
Reservoir name	= Detention Pond	Max. Storage	= 2,207 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 9

Combined Undetained Runoff

Hydrograph type Storm frequency	= Combine = 10 yrs	Peak discharge Time to peak	= 4.903 cfs = 716 min
Time interval	= 2 min	Hyd. volume	= 10,643 cuft
Inflow hyds.	= 5,7	Contrib. drain. area	= 0.500 ac

19

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 10

Combined Detained Runoff

Time interval= 2 minHyd. volume= 10,633 cuftInflow hyds.= 6, 8Contrib. drain. area= 0.000 ac	Hydrograph type Storm frequency Time interval Inflow hyds.	 Combine 10 yrs 2 min 6, 8 	Peak discharge Time to peak Hyd. volume Contrib. drain. area	= 0.625 cfs = 728 min = 10,633 cuft = 0.000 ac
--	---	--	---	---

20

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.493	2	716	3,360				Pre Off-Site Area (Pre DA 1)(Bypass
2	SCS Runoff	5.229	2	724	16,670				Pre On-Site Area (DA 2)
3	Combine	5.855	2	720	20,030	1, 2			Combined Pre-Developed Flow
4	SCS Runoff	1.493	2	716	3,360				Post Off-Site Area (Post DA 1)(Divert
5	SCS Runoff	3.980	2	716	8,959				Post On-Site Area 2 (Post DA 2)
6	Reservoir	0.347	2	744	8,949	5	983.74	3,992	Chamber Flow
7	SCS Runoff	4.312	2	716	9,705				Post On-Site Area 3 (Post DA 3)
8	Reservoir	1.071	2	724	9,705	7	985.59	3,703	Pond Flow
9	Combine	8.292	2	716	18,664	5, 7,			Combined Undetained Runoff
10	Combine	1.411	2	724	18,654	6, 8,			Combined Detained Runoff
Lee	s Summit Hvo	drographs	s 2023-0)9-01.gpw	Return P	eriod: 100	Year	Thursday, 0	9 / 7 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

Post Off-Site Area (Post DA 1)(Diverted)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.493 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 3,360 cuft
Drainage area	= 0.090 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 12.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.050 x 98) + (0.040 x 74)] / 0.090

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 5

Post On-Site Area 2 (Post DA 2)

Hydrograph type	= SCS Runoff	Peak discharge	= 3.980 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 8,959 cuft
Drainage area	= 0.240 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 12.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.130 x 98) + (0.110 x 74)] / 0.240

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 6

Chamber Flow

Hydrograph type	= Reservoir	Peak discharge	= 0.347 cfs
Storm frequency	= 100 yrs	Time to peak	= 744 min
Time interval	= 2 min	Hyd. volume	= 8,949 cuft
Inflow hyd. No.	= 5 - Post On-Site Area 2 (Post	DMa2) Elevation	= 983.74 ft
Reservoir name	= Underground Detention	Max. Storage	= 3,992 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 7

Post On-Site Area 3 (Post DA 3)

Hydrograph type	= SCS Runoff	Peak discharge	= 4.312 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 9,705 cuft
Drainage area	= 0.260 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 12.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.140 x 98) + (0.120 x 74)] / 0.260

Thursday, 09 / 7 / 2023

25

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 8

Pond Flow

Hydrograph type	= Reservoir	Peak discharge	= 1.071 cfs
Storm frequency	= 100 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 9,705 cuft
Inflow hyd. No.	= 7 - Post On-Site Area 3 (Post	DAa&) Elevation	= 985.59 ft
Reservoir name	= Detention Pond	Max. Storage	= 3,703 cuft

Storage Indication method used.

26

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 9

Combined Undetained Runoff

Hydrograph type Storm frequency	= Combine = 100 vrs	Peak discharge Time to peak	= 8.292 cfs = 716 min
Time interval	= 2 min	Hyd. volume	= 18,664 cuft
Inflow hyds.	= 5,7	Contrib. drain. area	= 0.500 ac

27

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 10

Combined Detained Runoff

Hydrograph type	= Combine	Peak discharge	= 1.411 cfs
Storm frequency	= 100 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 18,654 cuft
Inflow hyds.	= 6, 8	Contrib. drain. area	= 0.000 ac

28

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Return Period	Return Intensity-Duration-Frequency Equation Coefficient						
(Yrs)	В	D	Е	(N/A)			
1	0.0000	0.0000	0.0000				
2	80.1702	15.0000	0.9000				
3	0.0000	0.0000	0.0000				
5	0.0000	0.0000	0.0000				
10	183.3473	19.2000	1.0096				
25	197.2999	18.6000	0.9937				
50	235.4014	19.9000	1.0020				
100	252.3450	19.7000	0.9969				

File name: IDF Curve APWA5600.IDF

Intensity = B / (Tc + D)^E

Return	Intensity Values (in/hr)											
(Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	5.41	4.42	3.76	3.27	2.90	2.61	2.37	2.18	2.01	1.87	1.75	1.65
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10	7.35	6.08	5.18	4.52	4.00	3.59	3.26	2.98	2.74	2.54	2.37	2.22
25	8.53	7.05	6.00	5.23	4.63	4.16	3.77	3.45	3.18	2.95	2.75	2.58
50	9.39	7.82	6.70	5.86	5.20	4.68	4.25	3.90	3.60	3.34	3.12	2.92
100	10.32	8.59	7.35	6.43	5.71	5.14	4.67	4.28	3.95	3.67	3.42	3.21

Tc = time in minutes. Values may exceed 60.

tesere to end and the series and the series and the series of the series	\Users\Scott Poirrier\High Tide	Consultant Dropbox\Projects\Reference Material\LADOTD\New\LADOTD Region 1.pc
--	---------------------------------	--

		Rainfall Precipitation Table (in) 1-yr 2-yr 3-yr 5-yr 10-yr 25-yr 50-yr 100-yr 1.37 2.20 0.00 3.30 7.80 9.60 11.10 12.60							
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	
SCS 24-hour	1.37	2.20	0.00	3.30	7.80	9.60	11.10	12.60	
SCS 6-Hr	0.00	1.80	0.00	0.00	2.60	0.00	0.00	4.00	
Huff-1st	0.00	1.55	0.00	2.75	4.00	5.38	6.50	8.00	
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Custom	1.37	1.75	0.00	2.80	3.90	5.25	6.00	7.10	

Design Procedure Form: Extended Dry Detention Basin	(EDDB)
Main Worksheet	
Designer:	of
I. Basin Water Quality Storage Volume $\mathcal{N}Q_{\mathcal{V}} = \mathcal{P}(\mathcal{R}_{\mathcal{V}})(\mathcal{A}/12) \rightarrow \mathcal{R}_{\mathcal{V}} = 0.05 \pm 0.00$ Step 1) Tributary area to EDDB, Ar (ac) $= 1.37 \mathcal{I}_{\mathcal{V}} \begin{bmatrix} 0.05 \pm 0.009(47,7) \end{bmatrix} \begin{bmatrix} 0.5Ac \\ 12 \mathcal{V}/14 + 10 \end{bmatrix}$ Step 2) Calculate WQv using methodology in Section 6 $\mathcal{N}Q_{\mathcal{V}} = 0.027Ac - f_{\mathcal{V}}$ Step 3) Add 20 percent to account for silt and sediment deposition in the basir $= 1, 191.8 f^{+3}$	$Gq(I) \rightarrow I = 47.7\%$ $A_{\tau}(ac) = \underline{O.SAc}$ $WQv(ac-ft) = \underline{O.027A}_{\tau} + \frac{1}{5}$ $V_{design}(ac-ft) = \underline{O.03} \longrightarrow 1,306.8 + \frac{1}{5}$
Ila. Water Quality Outlet Type	4
Step 1) Set water quality outlet type Type 1 = single orifice Type 2 = perforated riser or plate Type 3 = v-notch weir	Outlet Type =
Step 2) Proceed to Step IIb, IIc, or IId based on water quality outlet type slected	
b. Water Quality Outlet, Single Orifice	
Step 1) Depth of water quality volume at outlet, Z_{WD} (ft) $\# WQ = 0.5(3,5) =$	$1.75ff = \frac{3.5}{2.00}$
Step 2) Average head of water quality volume over invert of orifice. F_{VNO} (ft) $H_{VNO} = 0.5 \cdot Z_{VNO}$ $(3 - 0.027 \text{ Ac} - f4 (43, 560 \text{ f} + 2))$	$H_{MQ}(\mathbf{ft}) = 1.75$
Step 3) Average water quality outflow rate, C_{WO} (cfs) $40(3, 6cc)$ $Q_{WO} = (WQ_{*} + 43.560)/(40 + 3.600)$	Q_{WO} (cfs) = $\frac{\mathcal{O}, \mathcal{OO}}{\mathcal{O}}$
Step 4) Set value of orifice discharge coefficient, C_0 $C_0 = 0.66$ when thickness of riser/weir plate is \leq orifice diameter $C_0 = 0.80$ when thickness of riser/weir plate is $>$ orifice diameter $O_0 = 12/2$,008 0.5 c. = 0.66
Step 5) Water quality obulet orifice diameter (minimum of 4 inches), D_o (in) $D_o = 12000 \begin{bmatrix} 0.66 \\ T \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0.66 \\ T \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0.66 \\ T \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix}$	$D_{o}(in) = \frac{4}{12}$
Step 6) To size outlet orifice for EDDB with an irregular stage-volume relationship, use the Single Orifice Wo	orkshee
Ic. Water Quality Outlet, Perforated Riser	
Step 1) Depth at outlet above lowest perforation, $Z_{\rm MO}$ (ft)	Z _{NO} (ft) =
Step 2) Recommended maximum outlet area per row. A _c (in ²) A _c = (WQv)/(0.013 * Z_{WC}^2 +0.22 * Z_{WC} -0.10)	A _v (in ²) =
tep 3) Circular perforation diameter per row assuming a single column, C_1 (in)	D ₁ (in) =
tep 4) Number of columns, n	n _c =
tep 5) Design circular perforation diameter (should be between 1 and 2 inches), $E_{\rm perf}$ (in)	D _{perf} (in) =
Step 6) Horizontal perforation column spacing when $n_c>$ 1, center to center, S_c If $D_{perf}\geq$ 1.0 inch, S_c = 4	S _c (in) =
Step 7) Number of rows (4" vertical spacing between perforations, center to center), r,	n, =

WORKSHEET 1: REQUIRED LEVEL OF SERVICE - UNDEVELOPED SITE

	Date:
ecked:	Date:
1	ecked:

1. Runoff Curve Number

A. Predevelopment CN

		CN from		Product of
Cover Description	Soil HSG	Table 1	Area (ac.)	CN x Area
Woods-Gress (Fair)	L	76	0.5	38
		Totals:	0,5	38

Area-Weighted CN = total product/total area =

(Round to integer)

76

B. Postdevelopment CN

		CN from		Product of
Cover Description	Soil HSG ¹	Table 1	Area (ac.)	CN x Area
Imperiors	6	98	0.24	23,52
open Space (Good)	C	74	0,26	19,24
, ,				
		Totals:	0.5	42.76

76

86

10

Postdevelopment CN is one HSG higher for all cover types except preserved vegetation, absent documentation showing how postdevelopment soil structure will be preserved.

Area-Weighted CN = total product/total area =

C. Level of Service (LS) Calculation

Predevelopment CN:

Postdevelopment CN:

Difference:

LS Required (see scale at right):

86 (Round t	o integer)
Change in CN	LS
17+	8
7 to 16	7
4 to 6	6
1 to 3	5
0	4
-7 to -1	3
-8 to -17	2
-18 to -21	1
-22 -	0

WORKSHEET 2: DEVELOP MITIGATION PACKAGE(S) THAT MEET THE REQUIRED LS

Project:	Bv.
Location:	Checked [.]
Sheet of	Sheeked.

1. Required LS (New Development, Wksht 1) or Total VR (Redevelopment, Wksht 1A):

Note: Various BMPs may alter CN of proposed development, and LS; recalculate both if applicable.

Date:

Date:

7

2. Proposed BMP Option Package No.

		VR from		
	Treatment	Table 4.4	Product of VR	
Cover/BMP Description	Area	or 4.6 ¹	x Area	
Extended Dry Detention	0,5	4	2]
Tatalá				
iotai :	*We	Total: ighted VR:	4	= total product/total a
 VR calculated for final BMP or Total treatment area cannot ex Blank in Redevelopment 	nly in Treatme xceed 100 pe	ent Train. rcent of the	actual site area	
Meets required LS (Yes/No)?	NO	(If No, or if proceed be	additional options low.)	are being tested,

Proposed BMP Option Package No. $\underline{\lambda}$ 3.

		VR from		
Cover/BMP Description	Treatment Area	Table 4.4 or 4.6 ¹	Product of VR x Area	
Catch Basin Insert	0,5	5	2.5	
Total ² :	0.5 *We	Total: ighted VR:	2,5	= total product/total a

1 VR calculated for final BMP only in Treatment Train. 2

Total treatment area cannot exceed 100 percent of the actual site area.

* Blank In Redevelopment

Meets required LS (Yes/No)? YES (If No, or if additional options are being tested,

move to next sheet.) 4+5=9>7

TABLE 4.1 Common Cover Types and Curve Numbers

How To Use This Table:

- 1. This table presents the cover types that a site planner is most likely to encounter, but is not all-encompassing. See TR-55 for additional information.
- 2. Site planners may substitute curve numbers from APWA 5602.3 or other local regulations, if applicable, to be consistent with hydrology calculations.
- 3. "Undeveloped" cover types may be used on portions of developed sites where preexisting cover is preserved and protected from disturbance.
- Postdevelopment HSG is assumed to be one group higher in runoff than predevelopment, unless soil treatment plan is provided to document otherwise. See Appendix A for soil preservation guidance.

UNDEVELOPED					DE	DEVELOPED							
Cover Type Condition CN by		CN by Hydrolog	ic Soil Group	(HSG)	Cover Type	CN	by HSG						
		В	С	D		В	с с	D					
					Parking lots, roofs, streets								
Fallow, bare soil		86	91	94	with sewer, water, etc.	98	98	98					
Fallow, crop residue	Poor	85	90	93	Commercial, business	92	94	95					
Fallow, crop residue	Good	83	88	90	Streets: paved, open ditch	89	92	93					
Straight row crops	Good	78	85	89	Industrial (or office park)	88	91	93					
Contoured crops	Good	75	82	86	Newly graded areas	86	91	94					
Contoured and													
terraced crops	Good	71	78	81	Streets: gravel	85	89	91					
Pasture	Poor	79	86	89	Streets: dirt	82	87	89					
Pasture	Fair	69	79	84	Residential, 1/8-acre	85	90	92					
Pasture	Good	61	74	80	Residential, 1/4-acre	75	83	87					
Woods-grass	Poor	67	77	83	Residential, 1/3-acre	72	81	86					
Woods-grass	Fair	65	76	82	Residential, 1/2-acre	70	80	85					
Woods-grass	Good	55	70	77	Residential, 1-acre	68	79	84					
Woods	Poor	66	77	83	Residential, 2-acre	65	77	82					
Woods	Fair	60	73	79	Open space (turf), poor	79	86	89					
Woods	Good	55	70	77	Open space (turf), fair	69	79	84					
Meadow		58	71	78	Open space (turf), good	61	74	80					
Brush-weeds-grass	Poor	67	77	83	Native grass	58	71	78					
					Native grass, shrubs and	20	/1	70					
Brush-weeds-grass	Fair	56	70	77	forbs (formal plantings)	56	70	77					
				2000	Native grass, shrubs and	50	,0	17					
Brush-weeds-grass	Good	48	65	73	forbs (informal plantings)	48	65	73					

Source: U.S. Department of Agriculture, Natural Resource Conservation Service Urban Hydrology for Small Watersheds, Technical Release 55 (TR-55; 1986)

Table 4.4	
Best Management Practice	Value Ratings

		Median Expected Effluent EMC TSS (mg/L) ^a		Value	Ratings		
	Cover Type or BMP		Water Quality Value	Volume Reduction	Temperatu Reductio	n Floatables Reduction	Overall Value Rating
Vegetatio	n	N/A	5.25	2	1	1	9.25
Native Ve	getation preserved or established						0.20
Rain Gar	den	< 10	4	2	1	2	9.0
A small re	sidential depression planted with native veget	ation designed to capture	and infiltrate ru	inoff			
Infiltratio	n Practices	< 10	4	2	1	2	00
Infiltration	Basin					-	0.0
Infiltration	Trenches						-
Bioretent	ion	< 10	4	1.5	1	2	8.5
Small eng	ineered and landscaped basins designed to fil	ter runoff before release				-	0.0
Pervious	or Porous Pavement	10-20	3	15	4	2	7.5
Pervious (Concrete	10 40		1.0		4	1.5
Porous As	phalt						-
Modular C	concrete Block						-
Extended	Detention Wetland	< 10	4	2	0		7.0
A land are	a that is permanently wet with hydric soils size	d to detain the WQv for a	a minimum of 40) hours.	U		7.0
Media Fill	ration Practices	< 10	4	0	0	2	60
Surface Sa	and Filter		A REAL PROPERTY AND A REAL PROPERTY.			2	0.0
Undergrou	and Sand Filter						-
Pocket Sa	nd Filter						-
Perimeter	Sand Filter						-1
Extended	Wet Detention	10-20	3	2	.4		50
A basin inf	tended to have a permanent pool and sized to	detain the WQv for a min	imum of 40 hou	irs			0.0
Vegetated	Filter Strip	10 - 20	3	1	0	1	5.0
Buffer strip	with native vegetation treating sheet flow						
Native Ve	getation Swale	10 - 20	3	1	0	0	4.0
Native gra	sses and forbes planted in a swale to reduce v	elocity of runoff and prom	note infiltration				
Extended	Dry Detention Basin	20 - 50	2	1	0	1	40
A basin lin	ed with native plant species designed to detain	the WQv for a minimum	of 40 hours wit	h no permanent in	poundment of	water	4.0
Other Sys	tems	10 - 100 ^(b)	1-3 (0)	0	0	2	3.0-5.0 (d)
Proprietary	Media Filtration Devices						
Hydrodyna	mic Devices						
Battle Box	es						
Catch Basi	n inserts						
Signage		N/A	N/A	N/A	N/A	N/A	BMP VR +
Creater D				State of the			0.25 (e)
Green Roo				State Section and	A STAR		CN Credit
Notos:	edit for Post Concretrcution CN Reduction,	See Design Section	Later Angles			1257 558	See Design
Tee	Total automanded callida						
135 ma/l	Milligrams per liter						
a a	Expected median event mean expected						
	Source: Analysis of Treatment System Port	s of 155 is based on ana	lysis of studies	in International BM	P Database w	ww.bmpdatabase	.org
	oodide. Analysis of mealinent system Penc	mance, international Sto	ormwater Best N	Management Pract	ices (BMP) Da	tabase 1999-200	5. Feb. 2006
b	Jurisdiction will assign the score based on in However, if the proprietary BMP relies on se particle size distributions must be submitted	dependent 3rd party field dimentation as the primation for the range of expected	l data showing e ry pollutant rem I flow rates	expected event me oval mechanism, t	an concentrati hen performar	ions TSS in the eff ice data over the ra	luent. ange of
b c	Jurisdiction will assign the score based on in However, if the proprietary BMP relies on se particle size distributions must be submitted Water Quality Value will vary based on the n	dependent 3rd party field dimentation as the primal for the range of expected redian concentration of T	I data showing e ry pollutant rem I flow rates. SS in the efflue	expected event me oval mechanism, t	an concentrati hen performar	ions TSS in the eff ice data over the ra	luent. ange of
b c d	Jurisdiction will assign the score based on in However, if the proprietary BMP relies on se particle size distributions must be submitted Water Quality Value will vary based on the n Overall Value Rating will vary based on the	Idependent 3rd party field dimentation as the primal for the range of expected nedian concentration of T sum of the four Value Rat	I data showing e ry pollutant rem I flow rates. SS in the efflue ings.	expected event me oval mechanism, t nt (measured in me	an concentrati hen performan g/l).	ions TSS in the eff ice data over the ra	luent. ange of

			VR 2 (Second BMP in Series)												
			Cover Type or BMP	Native Vegetation	Rain Garden	Infiltration Practices	Bioretention	Pervious or Porous Pavement	Extended Detention Wetland	Media Filtration Practices	Extended Wet Detention	Vegetated Filter Strip	Native Vegetation Swale	Extended Dry Detention Basin	Other Systems
			Overal Value Rating	9.25	9.0	9.0	8.5	7.5	0.7	6.0	5.0	5.0	4.0	4.0	3.0-5.0
VR 1 (First BMP in	Series)														
Cover Type or BMP		Overall Value Rating	JA1" PL	ş											
Native Vegetation	N/A	9.25			12.25	12.25	11.75	11.75	11.25	9.25	10.25	10.25	9.25	9.25	10.25
Rain Garden	< 10	9.0													
Infiltration Practices	< 10	9.0													
Bioretention	< 10	8.5			10.50	10.50	10.00	10.00	9.50	7.50	8.50	8.50	8.50		
Pervious or Porous Pavement	10-20	7.5				10.50	10.00		9.50	7.50	8.50	8.50	8.50		
Extended Detention Wetland	< 10	7.0							10.00		9.00	9.00	8.00		
Media Filtration Practices	< 10	6.0				9.00	8.50		8.00	6.00	7.00	7.00	7.00		
Extended Wet Detention	10 - 20	5.0							10.00		9.00	9.00	8.00		
Vegetated Filter Strip	10 - 20	5.0			10.00	10.00	9.50	9.50	9.00	7.00	8.00	8.00	7.00	7.00	d
Native Vegetation Swale	10 - 20	4.0			10.00	10.00	9.50		8.00	7.00	7.00	7.00		7.00	d
Extended Dry Detention Basin	50 - 100 ^(b)	4.0				10.00					8.00	8.00	7.00		
Other Systems	10 - 100	3.0-5.0			d	d	d	d	d	d	d	d	d	d	d

TABLE 4.6 Composite Value Ratings for Two BMPS in Series

> Note: а

Blank cells indicate BMP combinations that are either infeasible or highly unlikely. Bold cells indicate feasible treatment train combinations that would not increase the overall VR. b

Additional BMPs may be added using the formula above, provided that the sum of the A and C D values (Table 3) do not exceed their respective maximum values, and only the C value for the final BMP in series is used.

d Calculate Composite Value Rating utilizing Other System Rating